
January 28, 2005 CMS DB Trail 1

The CMS Databases Trail

Thoughts from Fermilab
(for discussion at CMS DB WS)

Lee Lueking
January 28, 2005

January 28, 2005 CMS DB Trail 2

Overview

• The Equipment Management DB and Beyond (A
generalized design).

• Calibration and Slow Controls DBs (Conditions).
• APIs and interfaces.
• General plan: schemas, schema owners, roles,

naming conventions.

Thanks to Gennadiy Lukhanin, Yuyi Guo, and
Sergey Kosyakov for their contributions.

January 28, 2005 CMS DB Trail 3

Equipment Management DB

• The Hardware “parts” going into the CMS
detector are currently being cataloged in the
Equipment Management Database (EMDB).

• A convenient browsing tool is provided through
the Rack Wizard.

• Work has been done to extend this to include the
relationships between the parts in the geometrical,
mechanical, and electrical contexts.

January 28, 2005 CMS DB Trail 4

Equipment Management DB
• Each sub-detector has a set of

“parts”. Each part has a part specific
table; For example for PIXEL, crate,
rack, module, Read Out Chip (ROC),
HDI, Blade, Disk are parts.

• All part tables are foreign keyed to a
“physical_part” table. This is a super-
type level, and is the “parent” to all
part tables.

• A “kind_of_part” is a catalog of the
part table names.

• Valid relationships are defined in the
“part_to_part_relationship” table.
(They can also be defined explicitly
via FK between specific part tables.)

HCAL WEDGE
o ATTR1
o ATTR2

HCAL TOWER
o ATTR1
o ATTR2

CRATE
o ATTR1
o ATTR2

CABLE
* VERSION
* BARCODE
o LABLE
o LENGTH
o COMMENTS

BOARD
o ATTR1
o ATTR2

SOLID
NAME
* SOL_TYPE

PHYSICAL PART TREE

PHYSICAL PART
PART_ID
o BARCODE
o SERIAL_NUMBER

MATERIAL
NAME
* DENSITY

DETECTOR PART
o SOLID_ID
o MATERIAL_ID
o PART_ID

extends

to

extends

to

extends

to

extends

to

extends

to

from

to

from

to describes

refers to

parent side

child side

from

to

January 28, 2005 CMS DB Trail 5

EMDB Augmented Schema (1 of 3)

• Physical part relationships, construction or geometric
hierarchy, are constrained through the
“part_to_part_relationship” table.

PART TO PART RELATIONSHIP
PART_TO_PART_RELATIONSHIP_ID
o PRIORITY
o DISPLAY_NAME

KIND OF PART
KIND_OF_PART_ID
* IS_DETECTOR_PART
* EXTENSION_TABLE_NAME

SOLID
NAME
* SOL_TYPE

PHYSICAL PART TREE

PHYSICAL PART
PART_ID
o BARCODE
o SERIAL_NUMBER

MATERIAL
NAME
* DENSITY

DETECTOR PART
o SOLID_ID
o MATERIAL_ID
o PART_ID

has

belons

child

rel child ref

parent

rel parent ref

is kind of

specifies

from

to

from

to
describes

refers to

parent side

child side

from

to

January 28, 2005 CMS DB Trail 6

EMDB Augmented Schema (2 of 3)

• signal connections, are represented in the
“signal_connections” and “signal_connections_type”
tables.

• Additional relationships could be added if needed.

SIGNAL CONNECTION TYPE
SIGNAL_CONNECTION_TYPE_ID
o COMMENTS

SIGNAL CONNECTION
CONNNECTION_ID
o COMMENTS

CONNECTOR
CONNECTOR_ID
* SIGNAL_DIRECTION
* CONNECTOR_LABEL
o COMMENTS

KIND OF PART
KIND_OF_PART_ID
* IS_DETECTOR_PART
* EXTENSION_TABLE_NAME

SOLID
NAME
* SOL_TYPE

PHYSICAL PART TREE

PHYSICAL PART
PART_ID
o BARCODE
o SERIAL_NUMBER

MATERIAL
NAME
* DENSITY

DETECTOR PART
o SOLID_ID
o MATERIAL_ID
o PART_ID

start

start con ref

end

end con ref

signal end part

conn end part ref

signal start part

conn start part ref

defined by

defines

cable part

cable ref

conn start point

conn start ref

attached to

has conn end point

conn end ref

is kind of

specifies

from

to

from

to describes

refers to

parent side

child side

from

to

January 28, 2005 CMS DB Trail 7

Augmented Schema (3 of 3)

PHYSICAL PART TREE

ATTRBASE
ATTRIBUTE_ID

CABLE
* VERSION
* BARCODE
o LABLE
o LENGTH
o COMMENTS

CONNECTOR
CONNECTOR_ID
* SIGNAL_DIRECTION
* CONNECTOR_LABEL
o COMMENTS

SIGNAL CONNECTION TYPE
SIGNAL_CONNECTION_TYPE_ID
o COMMENTS

SIGNAL CONNECTION
CONNNECTION_ID
o COMMENTS

SOLID
NAME
* SOL_TYPE

MATERIAL
NAME
* DENSITY

HCAL WEDGE
o ATTR1
o ATTR2

HCAL TOWER
o ATTR1
o ATTR2

CRATE
o ATTR1
o ATTR2

BOARD
o ATTR1
o ATTR2

POSITION NUMBERING SCHEMAS
o VALUE

PART TO ATTR RELATIONSHIP
PART_TO_ATTR_RELATIONSHIP_ID
o DISPLAY_NAME

ATTRIBUTE LIST
ATTRIBUTE_LIST_ID

ATTR CATALOG
ATTR_CATALOG_ID
* VISUAL_STYLE
o DESCRIPTION
o EXTENSION_TABLE_NAME

PHYSICAL PART
PART_ID
o BARCODE
o SERIAL_NUMBER

PART TYPES
o VALUE

PART TO PART
RELATIONSHIP
PART_TO_PART_RELATIONSHIP_ID
o PRIORITY
o DISPLAY_NAME

KIND OF PART
KIND_OF_PART_ID
* IS_DETECTOR_PART
* EXTENSION_TABLE_NAME

DETECTOR PART
o SOLID_ID
o MATERIAL_ID
o PART_ID

from

to

parent side

child side

extends

to

extends
to

extends

to

extends

to

extends

to

extends

base

extends

base

combined of

belongs to

cable part

cable ref

signal end part

conn end part ref

signal start part

conn start part ref

end

end con ref

defined by

defines

start

start con ref

conn end point

conn end ref

conn start point

conn start ref
attached to

has

fromto

from

to

defined byrefers to

defined by

referes to

defined by

referes to

belogs to part

has attributes

belongs to catalog

has

parent

rel parent ref

describes

refers to

child

rel child ref

has

belons

is kind of

specifies

• Some design-time constraints are
replaced with data driven
constraints.

• Allows to establish relationships
between detector parts at the
part-type level.

• Each detector component type
(part type) has a history table
being populated by databased
triggers. History can be used for
later analysis.

• This open design approach
ensures the flexibility to
incorporate additional data model
features.

January 28, 2005 CMS DB Trail 8

Design Benefits
• Each detector part is uniquely identifiable in the system.

• All detector part relationships are defined at the top level instead of navigating
through component hierarchy.

• Simple schema changes are needed to add a new detector part (one table and
one foreign key to the “physical parts” table).

• Part to part relationships can be defined at any time by the authorized
database user.

• “out of the box” support by most O/R (Object Relations) mapping tools
e.g. TOP LINK , OJB , ADO.

• Simplifies and generalizes object-to-object navigation in APIs e.g. GUI and
data loading tools.

January 28, 2005 CMS DB Trail 9

Conditions DB

• Need to “capture” calibration (pedestals, gains, timing
offsets, …), or monitoring information (HV, LV, currents,
temperatures, …).

• Values captured are valid for certain time period called
Interval of Validity (IOV).

• In the case of calibration, values are subject to change (re-
calibration or re-calculation) and must have ability to
“version” them.

• A tagging mechanism is required to readily identify certain
data which can be used together, for ORCA for example.

January 28, 2005 CMS DB Trail 10

Conditions DB (1 of 3)
• The simplest case for DCS or

calibration. All channels for a
particular sub-detector are calibrated
together.

• Each IOV can have one or more sets
of conditions values which are mapped
to the detector through a channel map.

• A cond_kind table distinguishes
between pedestals, gains, time offsets,
temperatures,…

January 28, 2005 CMS DB Trail 11

Conditions DB (2 of 3)
• In HCAL the ability to generate a

“cond_set” of calibration values is needed
so portions of the HCAL detector can be
calibrated at different times.

• A top level table called “conditions” is
added, and a mapping table which provides
access to all information needed for a
complete HCAL calibration.

• A “cond_kind” and “cond_algorithm” fully
specify what the calibration is for and what
was used to generate it.

• The “kind” in “cond_kind” is naively
pedestal or gain. The reality is this needs to
be more complex than this.

• The “name” and “version” in
“cond_algorithm” are make up the version
information.

January 28, 2005 CMS DB Trail 12

HCAL Calibration Approach

Gennadiy’s picture

Calibration
Run

Calibration

Values

used

January 28, 2005 CMS DB Trail 13

Calibration DB
• This is the existing HCAL

calibration database used for 2004
testbeam calib data.

• Note the tables used to define
subsets of the HCAL detector.

• Other sub-detectors may be
interested in a similar way of
defining and mapping subsets.

• The hcal_algorithm and
hcal_set_type tables need to be
understood better and connected
somehow to provide the “version”
and “revision” tracking.

January 28, 2005 CMS DB Trail 14

ETL (Extraction/Transformation/Loading)

• Some examples of tools that exist:
– Loading conditions data, for example tools to load pedestals and gains.

(Existing examples for HCAL).
– Loading test information into database, for example construction test data

of plaquettes for PIXELS.
– Loading parts into equipment management DB and the relationships

between them. (Existing example for HCAL)
– PL/SQL scripts to load HV monitoring data. (Existing examples for

HCAL).
– ORCA API to access HCAL data through Frontier (next slide).
– GUI based tools for browsing EMDB. (Rack Wizard)

• We need a list of what is existing and what is needed by each sub-
system.

January 28, 2005 CMS DB Trail 15

Access via Frontier

• ORCA/Frontier read-only interface exists for
HCAL
– Retrieves pedestals and gains.
– Used to access calibration info form TB conditions DB.
– Can easily be extended for other sub-detectors.

• Writing via Frontier is under investigation.
– Provides straightforward client API to load the DB
– Issues of authentication and authorization are essential

for writing.

January 28, 2005 CMS DB Trail 16

The FrontierCalib.h Interface
namespace frontier_calib{

struct CalibData

{std::vector<int> eta; std::vector<double> phi; std::vector<int> depth;
std::vector<double> value; std::vector<double> sigma;};

struct GainErrorAllByTagRun : public CalibData {};

struct PedestalErrorAllByTagRun : public CalibData {};

struct RunInterval

{ long long calib_id; long long set_type_id; long long run_first; long long run_last; };

template<class T> void get(T *vd,RunInterval &ri,const std::string &tag,long long
runnumber);

}; // End of frontier_calib namespace

It exists and works. It uses the standard
COBRA/CARF CondDB interface.

January 28, 2005 CMS DB Trail 17

General Organization
• Each sub-system will have, minimally, the following table spaces

– One data,
– One index,
– One blob

• Schema owner Responsibility
– Each sub-system will own the tables in their schemas.
– Developers for the sub-system can add and modify tables and

relationships for the schemas they own.
• Database Administrator (DBA) responsibility.

– Create DB accounts.
– Backup and recovery.
– Review schemas
– Schema deployment and changes for production instance.
– Daily database maintenance.

January 28, 2005 CMS DB Trail 18

General Database Roles
• Roles for data access and modification:

– Write (insert, update):
• Online: Loading values for calibration and alignment, monitoring and slow

controls. (DCS)
• Offline: Loading values for calibration and alignment.

– Read-only (select):
• Online: Accessing detector and front end electronics configuration. Accessing

calibration and alignment for HLT.
• Offline: Accessing calibration and alignment for ORCA. Accessing beam and

detector configuration for analysis.
– Admin (select, insert, delete, update):

• Online and Offline: Experts make critical changes as needed.

January 28, 2005 CMS DB Trail 19

Naming Conventions
• Tables in each sub-detector’s shema can have the same name as other

sub-detector schemas. These will be resolved in one of the following
ways:
– Public synonym, e.g. PIXEL_TABLE, HCAL_TABLE (32

characters max).
– Use schema owner, e.g. SchemaOwner. Table

• DB vendor independent: Table names, column names, and data types
should be compatible with MySQL and PostgreSQL standards. (See
for example Dennis box’ list for some rules:
http://home.fnal.gov/~dbox/SQL_API_Portability.html)

January 28, 2005 CMS DB Trail 20

Summary
• By adding functionality to the existing EMDB in a modular way, we

can also manage construction and configuration information.
• A conditions DB design that includes IOV management, as well as

accommodates subsets of the sub-detector, and algorithm versioning
might prove useful to other sub-detector groups. It can still use some
improvement.

• We hope that the APIs for the augmented EMDB and the Conditions
DB can be designed and built soon, and used universally for online
and offline applications.

• Following some general organizational guidelines, and assigning the
right roles for each application will help us to more easily build and
operate the system.

	The CMS Databases Trail
	Overview
	Equipment Management DB
	Equipment Management DB
	EMDB Augmented Schema (1 of 3)
	EMDB Augmented Schema (2 of 3)
	Augmented Schema (3 of 3)
	Design Benefits
	Conditions DB
	Conditions DB (1 of 3)
	Conditions DB (2 of 3)
	HCAL Calibration Approach
	Calibration DB
	ETL (Extraction/Transformation/Loading)
	Access via Frontier
	The FrontierCalib.h Interface
	General Organization
	General Database Roles
	Naming Conventions
	Summary

